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The stability of long steady three-dimensional salt 
fingers to long-wavelength perturbations 
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The stability of three-dimensional salt fingers to three-dimensional perturbations is 
considered. It is found that when square fingers are subjected to long-wavelength 
perturbations, then the same types of instability exist as for two-dimensional salt 
fingers. There are quantitative changes to the growth rates and the positions of 
marginal stability. 

1. Introduction 
It is known from laboratory experiments that salt fingers have a square planform 

(Turner 1979). Previous work on the stability of salt fingers has considered the motion 
in two-dimensional (planar) salt fingers (Stern 1969; Holyer 1981, 1984). The aim of 
this paper is to establish whether or not the same instabilities exist for square salt 
fingers, and if they do, what the quantitative changes are. 

For two-dimensional salt fingers subjected to long-wavelength internal-wave 
perturbations Holyer (1981) shows that the collective instability first occurs when 

where FT and Fs are the heat and salt fluxes through the salt fingers, v is the kinematic 
viscosity and T, and 8, are the heat and salt gradients. It is shown in this paper that 
for square salt fingers the collective instability still occurs, but first appears for a larger 
value of the stability ratio, namely when 

The non-oscillatory instability found for two-dimensional fingers by Holyer ( 1984) 
also occurs for three-dimensional fingers, with a modified growth rate. 

There is a short discussion in the conclusions about the relationship between the 
theory and laboratory observations, as well as suggestions for future theoretical, 
numerical and experimental work. For a discussion presented from the viewpoint of 
the experimentalist, McDougall & Taylor (1984) is the most recent and thorough 
reference. In  $2 the equations for steady salt fingers are obtained in a form that allows 
two-dimensional and square salt fingers to be considered from the same equations, 
by varying a parameter. In  $3 long-wavelength perturbations to this basic steady 
salt-finger state are considered, and the instabilities are obtained in $4. The structure 
needed to solve the equations is presented, but much of the detail is omitted since 
the algebra is extremely long and tedious. The results obtained agree with the 
two-dimensional results (Holyer 1984) in the appropriate limits and satisfy various 
symmetry checks. The determined reader is invited to check the algebra, but is 
warned of its length. 
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2. The salt fingers 
We consider motion in an unbounded region of incompressible stratified fluid with 

coordinates chosen so that z is vertically upwards and x and y are in the horizontal 
plane. The temperature field and the salinity field 8 are given by 

= T, z+ T(x, y, z ,  t ) ,  (2 .14 

s = sz z+ S(x, y, 2, t ) .  (2.lb) 

The density field is then given by 

p = poll  - (aT,-PS,) 2- (aT-PS)] ,  (2.2) 

where a and are the coefficients of expansion for heat and salt, with a and P positive. 
I n  order that the density gradient is statically stable we require that 

aT, > PS, > 0. (2.3) 

This also ensures that the temperature gradient is stable and the salinity gradient 
is unstable. 

The dimensionless equations of motion are then 

a - ' ( U t  + U ' V U )  = - V P +  (RT T - R ,  S )  k + V 2 U ,  ( 2 . 4 ~ )  

T,+u*VT+W = V2T, (2.4b) 

S,+U.VS+W = TV2S, ( 2 . 4 ~ )  

V'U = 0, (2.4d) 

where we have used a lengthscale 1 ,  a timescale 1 2 / K , ,  a temperature scale IT, and 
a salinity scale lS,. The velocity field is u = (u, v, w),  and k is the unit vector in the 
z-direction. There are four parameters in (2.4), given by 

where v is the kinematic viscosity and K~ and K ,  are the thermal and saline diffusion 
coefficients. The dynamic pressure p is given by 

P = PrJ{P-9Z[1 - - -a(~T, -PS, )~l~ .  (2.6) 

We look for a steady z-independent solution to (2.4) which represents motion in 

( 2 . 7 ~ )  

salt fingers. A periodic solution of this form (with u = v = 0) is 

w = WJx, y) = W sinx cosdy, 

T = T,(x, y) = 

S = SJx, y) = 

sinx cosdy, 

sinx cosdy, 

P = O ,  

(2.7b) 

( 2 . 7 ~ )  

(2.7d) 

with W=-P(l+d2) ,  @=-7$(1+d2), ( 2 . 8 ~ )  

and W ( l + d 2 )  = R T p - R s 8 .  

Eliminating @, p and $ from (2.8) gives 

Rs-rRT = 7(1+0?)~. 

(2.8b) 

(2.9) 



Stability of three-dimensional salt Jingers 

This equation defines the lengthscale 1. Dimensionally it gives 
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(2.10) 

The x-period of the fingers is then 2x11 and the y-period is 2xldl. If d = 1 then the 
fingers defined by (2.7) are square. If d = 0 we obtain two-dimensional fingers, 
uniform in the y-direction. If d +co we also obtain two-dimensional fingers uniform 
in the x-direction, provided the lengthscale is changed to dl. 

Experimentally the strength of salt fingers is determined not by measuring vertical 
velocities, i.e. p, but by measuring the amount of heat and salt transported by the 
fingers. The amount of heat transported downwards by the salt fingers is 

FT = - ~ T K ~  T,, 

where (-) denotes an x-average over period 2x and a y-average over period 2xld. Thus 

..-- 1 KTT, 
FT=-KTT,@Tsin2xcos2dy=- 

4 l+d2 . (2.11) 

The a appears as a result of averaging in both the x- and y-directions. In two-dimensions 
only the x-direction is averaged, so 4 appears instead of a. The amount of salt 
transported downwards is given by 

It can then be shown that 

3. The perturbations 

P= *14 (/3Fs-aFT). 
VKT( 1 + d2) 

(2.12) 

(2.13) 

We perturb the salt fingers by putting 

u = u’, ( 3 . 1 ~ )  

v = v’, (3.lb) 

w = W,(., y) + w’, 
T = q x ,  y) + T’, 
s = S S ( X ,  y) + S’, 

( 3 . 1 ~ )  

(3 . ld)  

(3.1e) 

where the quantities with a subscript s represent the steady salt-finger field and the 
primed quantities are the infinitesimal perturbation to the steady state. 

In  order to eliminate the pressure from the problem, we work with the vorticity 
equation, obtained by taking the curl of ( 2 . 4 ~ ~ ) .  Then the linearized equations for the 
perturbation quantities are 

($-cTV2) o’+ crk A V(RT T’ - R, 8’) = V A (us A 0’) + V A (u’ A o,), ( 3 . 2 ~ )  

(%-V2) T’+w’ = -u’*VTs-uu,~VT, (3.2b) 
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($7 v.> s + wf = - U f  vs, - u, -vs', 
V-u' = 0, 

where d = v A 11'. 

The steady salt-finger solution can be written as 

( 3 . 2 ~ )  

(3.2d) 

(3.3) 

(::I= w [($) ~~exp[i(r+dy)l+exp[i(z-dy)l  

-exp [ - i(z + dy)] -exp [ - i(z--dy)] . (3.4) 1 
The coefficients of (3.2) are thus periodic in z and y, and independent of z and t .  Hence 
there will be a Floquet solution to (3.2) in the form of a double sum 

The symmetry of the equations implies we need only consider 0 < y < t ,  0 6 S < !j 
and n + p  even. 

Substituting the solution (3.5) into the governing equation (3.2) gives five 
independent equations relating the constants unP, Tnp and S,,. The equations are 
given in the Appendix and are valid for every integer n and p. 

In order to consider perturbations a t  all wavelengths it would be necessary to solve 
the infinite set of equations (A 1)-(A 5). This would determine iw for given values of 
u, 7 ,  RT, v, y, 6 and m. 

In  this paper we consider only long-wavelength perturbations. This is done by using 
the lowest-order truncation to the equations that couples the salt fingers to the long 
lengthscale, namely we assume u,,, Tnp and S,, are each zero if either In1 > 1 or 
I p I > 1. This truncation is appropriate when ,u2 = y2 + a2 + m2 < 1. 

Performing the truncation leaves 25 equations in 25 unknowns, namely u,,, v,,, 
w,,, Tnp and S,, for m = 0, 1, - 1 and p = 0, 1, - 1 and n + p  even. The solvability 
condition for this set of equations then determines iw in terms of U ,  7 ,  RT, @, y, 8 
and m. 

To find iw the set of equations (A 1)-(A 5) is first solved for u,,, v,,, w,,, Tnp and 
S,, in terms of uoo, voo, woo, Too and Soo, for the following values of n and p : n = 1, 
p = 1; n = 1, p = -1; n = -1, p = 1; n = -1, p = -1. This is done by multiplying 
(A 1) by 6+pd and (A 2) by y+n and adding. Using (A 5), this eliminates u,, and 
v,,. Then (A 3) and (A 4) can be used to eliminate Tnp and S,,, which leaves an 
equation that gives w,, in terms of uoo, voo, woo, So, and Too. 

and hence u,,, v,?, Tnp and S,, are then known in terms of 
the n = 0, p = 0 variables. Thus it is possible to substitute these values into the n = 0, 
p = 0 equations to obtain five equations in the five unknowns uoo, voo, woo, Too and 
Soo. These equations are extremely long and complicated and to get results that can 
be understood i t  is necessary to simplify the equations. 

The values for w 
np 
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4. The instabilities 

the different instabilities that we hope to find. 
To proceed further we need to make more assumptions and to look specifically for 

4.1. Collective instability 

We suppose that y ,  6, m and p are all the same order and that cr $ 1. Simplifying 
the equations and substituting into (A 1)-(A 5 )  when n = p = 0 gives 

and that the system is unstable if 

3m2(y2 + dW) 
4(y2 + se) (y2 + 62 + ma) 

@ > cr(R,-R,). 

The instability is a growing oscillation, oscillating at the internal-wave frequency. 

can be written as 
In terms of the fluxes through the fingers, using (2.13), this instability criterion 

(4.3) 
PFs-aFT > (1+d2)(Y2+S2) (y2+S2+m2) 

v(aTz -@z)  3m2(ya + dasa) 

Wewritey =psin6cos~,S=psin8sinq5andm=pcosB,withp= (y2+62+m2$. 
Then the instability criterion is 

1 + a 2  1 
A > -  

3 cos2B (cos2$+d2 sin2$)’ 

where we have defined a stability parameter 

(4-4) 

The minimum value of the stability parameter occurs when 8 = 0 and $ = 0 or in. 
Thus the system first becomes unstable to the collective instability when 

(4.6) 

For salt fingers with a square cross-section, d equals one ; hence the system is unstable 
for 

For two-dimensional salt fingers when d = 0 or 00 the system is unstable for 

A > a( 1 + d2) min { 1, 1/d2}. 

A > %. (4.7) 

A > $ .  (4.8) 

This agrees with the result obtained for the stability parameter in Holyer (1981). Thus 
square salt fingers are slightly more stable to internal-wave perturbations than 
two-dimensional salt lingers. 

4.2. Non-oscillatory instability 
A new, non-oscillatory instability was found by Holyer (1984) for which y = 0. We 
look for the three-dimensional version of this instability, assuming also that 6 = 0. 
It is assumed that ma < 1, which is a necessary consequence of the truncation. It can 
then be shown that there are two separate unstable modes. 
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(i) If woo = Too = Soo = 0 and uoo =k 0 then 

2 - 4 4( l+d2) 
iw = --+(-+ gm2 g2m4 

Using (2.13) to write this in terms of fluxes gives 

u2m4 
(1 + d2)2 aT' 

iw =--+ ITm2 ( - + 
2 -  4 

(4-9) 

(4.10) 

In terms of fluxes through the fingers this is identical with (4.36) in Holyer (1984), 
if we set d = 0. (Looking a t  (4.9) there is apparently a discrepancy with (4.36). This 
occurs because the y-average of limd,, cosdy equals 1, but the limit as d+O of the 
y-average of cosdy equals 4. The expressions involving fluxes agree.) Taking the 
positive sign before the square root, we have a non-oscillatory solution with a positive 
growth rate. There is instability for all values of d .  For square salt fingers, where d = 1, 
the second term in the square root is half of the value that i t  has at  d = 0, and the 
growth rate is smaller than the growth rate for two-dimensional fingers. As d+oo 
this instability disappears, since iw + O .  

(ii) If uoo = Too = So, = 0 and woo + 0 then the motion in the n = 0, p = 0 part of 
the perturbation is in the (y, z)-plane. We find 

(4.11) 

As d+oo we get the same growth rate as from (4.9). If d-tco the salt fingers are 
two-dimensional, aligned in the y-direction, so we expect the same growth rate as 
for two-dimensional fingers aligned in the x-direction. This unstable mode also exists 
for all d .  For d = 1 it has the same growth rate as for case (i), and as d+O,  io+O.  

5. Conclusions 
It has been shown that the geometry that is chosen for salt fingers, namely 

two-dimensional or square, does not affect the types of instability to which salt fingers 
are liable. The collective instability occurs for both geometries. The critical value for 
the stability parameter (pFs -aF,)/v(aT, -pS,) changes from j for two-dimensional 
fingers to for square fingers. The non-oscillatory instability found in Holyer (1984) 
exists for square fingers, as well as two-dimensional ones, though with a slightly 
smaller growth rate. 

The main result of this paper is that qualitatively correct physical processes can 
be found from a study of two-dimensional salt fingers and that processes, such as the 
collective instability, will occur for both square and planar salt fingers. The effect 
of shear on salt fingers (Linden 1974) is to align them with the direction of shear, 
and so make them two-dimensional. Since the stability parameter is smaller for planar 
fingers than for square ones, it may be expected that salt fingers are more prone to 
the collective instability in shear flows. 

The experiments of Stern & Turner (1969) are most relevant to the collective 
instability theory presented here. They used salt and sugar for their experiment, with 
a deep layer of salt-stratified water beneath a uniform upper layer of lower-salinity 
water that contained sugar. Salt fingers appear at  the interface as soon as the two 
layers are formed, and they penetrate into the lower, stratified, fluid. As the salinity 
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gradient is reduced, longer fingers form, which break up, apparently by the collective 
instability mechanism, to give way to a well-stirred, convective layer, which is 
maintained by the flux through a thin salt-finger layer at the interface. In these 
experiments the stability parameter A was shown to be the parameter grouping that 
determined the stability of the system, and marginal stability occurred when it lay 
between 1.2 and 2.8. It would be helpful to the theoretical work to have more 
experiments carried out in similar systems where there is a linear heat and salt 
stratification, in order to find out if the same results are found in a heat-salt system 
and to study the destruction of long fingers in more detail. 

The majority of recent experiments (e.g. McDougall & Taylor 1984) have considered 
fluxes through an interface at which salt fingers are present. One may doubt whether 
the infinite model of this paper is relevant to these experiments, however : since the 
finger width is small compared with the height of the interfacial layer, the central 
part of the interface should be unaffected by the ends of the fingers, and Stern (1969) 
has argued that such interfaces should be marginally stable to the collective 
instability. Values of the stability parameter varying between 0.002 and 5 have been 
found for different configurations in heat-salt and salesugar systems. It is possible 
that some of the small values for the stability parameter occur because the 
non-oscillatory instability is the important mechanism, and not the collective 
instability, in the breakdown of short fingers. The shorter-wavelength non-oscillatory 
instability is likely to be responsible for the bulges and other small-scale irregularities 
that can be seen on salt fingers. The main thing that is needed from the experiments 
that is not currently available is good accurate profiles of the temperature and salinity 
within the salt finger interface. 

The most pressing theoretical problem is the study of the non-oscillatory instability 
and its weakly nonlinear development. It starts to grow at the region of maximum 
shear in the salt fingers. As it grows it could either tend to a stable cat’s-eye type 
of solution, or the recirculating regions of the linear theory could amalgamate and 
completely disrupt the salt-finger field. Experimentally, it would help if this 
instability could be separated from the collective instability, and this will only be 
possible when the non-oscillatory instability is better understood. 

Numerically, the most realistic calculations that have been carried out were made 
by Piaczek & Toomre (1980). They obtained numerical solutions that modelled the 
growth of two-dimensional salt fingers at an interface. It should be possible, with the 
increased storage and speed of computers, to use an amplitude expansion or a spectral 
method to look at the strongly nonlinear process of the breakdown of long salt fingers 
into interfaces separated by layers. Such a calculation would probably have to be 
restricted to two-dimensional equations, but this paper supports the idea that the 
results from two-dimensional and three-dimensional calculations would be qualitat- 
ively the same. 

I would like to thank one of the referees of a previous paper (Holyer 1984) for 
inspiring me to do this lengthy calculation. 
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+un-1, p+1+ %-1, p-l + 4%+1, p+1- vn+1, p-1 -Vn-1, p+1+ Vn-1, p - d l  

- k m ~ ~ ~ , - l , ~ - l + ~ n - l , ~ + l - ~ n + l , ~ - l - ~ n + l , , + l ~ ~  (A 3) 

The salt equation is 

+ %a-1, p+1+ %-1, p-l + d(%a+l, p+1- v,+1, p-1 -Vn-1, p+1+ vn-1, p-111 

- k m m s n - , ,  p-1 +Sn-1, p+l -sn+l ,  p-1- Sn+1, p + J *  (A 4) 

(A 5 )  

Finally, the continuity equation is 

(n+ y )  unp+ (S+pd)  ?Inp + mwnp = 0. 
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